DRIVE-TECHNOLOGY

Welle-Nabe-Verbindungen

INKOMA-GROUP Headoffice Sitz der INKOMA Maschinenbau GmbH Neue Reihe 44

D - 38162 Schandelah

Telefon: +49/(0)5306-9221-0 Fax: +49/(0)5306-9221-50 E-Mail: info@inkoma.de Internet: www.INKOMA.de

Änderungen im Sinne des technischen Fortschritts vorbehalten.

2014-1-MP-OE © INKOMA-GROUP

Produktbeschreibung

P3G- und P4C-Polygon, Vielkeilverbindung, Schalenkupplung

INKOMA-Welle-Nabe-Verbindungen helfen beim kostensparenden Konstruieren ohne Qualitätseinbußen, da es standardisierte, einbaufertige Maschinenbauteile sind.

In unterschiedlichster Ausführung sind sie wichtige technische Mittel zur Übertragung von Drehbewegungen und Drehmomenten. Schon um die Jahrhundertwende bestanden Schutzrechte für die Herstellung von Profilen in angenäherter Dreiecksform mit zykloidischen Begrenzungen.

Es hat Jahrzehnte gedauert, ehe man in der Lage war, wirtschaftlich Polygonprofile herzustellen.

Polygonprofile dienen hauptsächlich zur Kraftübertragung. Sie sind als absoluter Ersatz für Profile, Keilwellen und Kerbverzahnungen usw. anzusehen.

Gegenüber den meist herkömmlichen Profilen haben Polygonprofile keine Kerbwirkung, und somit ändern sich auch die Trägheitsmomente nicht. Der Polygonstab wird nur auf Torsion beansprucht.

Die Polygonwelle hat gegenüber herkömmlichen Keilwellenprofilen gleicher Größe eine um mehr als 30 % höhere Dauerfestigkeit.

Zum kompletten Programm gehören einbaufertige Polygonwellen, Polygonhülsen, Klemmringe und Schiebehülsen.

Das Programm ist so aufgebaut, dass durch entsprechende Auswahl und Kombination der einbaufertigen Bauteile nach Größe und Werkstoff eine Vielzahl von Bedarfsfällen abgedeckt werden können.

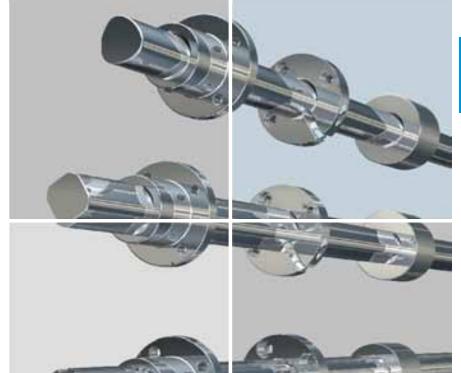
Durch Kombination der Hülsen mit einem Klemmring kann z.B. die Qualität des erforderlichen Sitzes (drehspielarmer, Übergangs- oder Festsitz) leicht eingestellt werden.

INKOMA-Wellen:

Lieferbar in Längen bis 6 m oder nach Kundenangaben fertig bearbeitet.

INKOMA-Hülsen:

Auf den Wellen verschiebbar. In Verbindung mit einem Klemmring kann der gewünschte Sitz vom Schiebesitz bis zum Festsitz eingestellt werden.


INKOMA-Klemmringe:

Durch eine Spannschraube und Kontermutter kann jeder gewünschte Sitz vom Schiebesitz bis zum Festsitz eingestellt werden.

INKOMA-Schiebehülsen:

Schiebehülsen sind Rohlinge mit dem entsprechendem Profil und werden vom Kunden weiterbearbeitet.

Inhaltsverzeichnis

P3G-, P4C-Polygonprofil, Keilwellen und Verbindungen für zylindrische Wellen

Seite

Vorauswahl und Produktvergleich

360

Produktbeschreibung P3G-Polygonprofil

Seite

361

Vorauswahl und Berechnungen P3G-Polygonprofil Sei

Seite

Festigkeitsberechnung Welle- und Nabenberechnung

362 - 363

Abmessungen P3G-Polygon

Seite

Welle (geschliffen) Hülse

364 - 365

Abmessungen P3G-Polygon

Seite

Klemmring Schiebehülse Lohnräumen

366 - 367

Einbaubeispiele P3G-Polygonprofil

Seite

368

Produktbeschreibung P4C-Polygonprofil

Seite

369

Vorauswahl und Berechnungen P4C-Polygonprofil

Seite

Festigkeitsberechnung Welle- und Nabenberechnung

370 - 371

Abmessungen P4C-Polygon

Seite

Welle (kaltgezogen) Hülse

372 - 373

Inhaltsverzeichnis

P3G-, P4C-Polygonprofil, Keilwellen und Verbindungen für zylindrische Wellen

Seite

374 - 375

Abmessungen	P4C-Polygon
--------------------	--------------------

Seite

Zahnstange Lohnräumen

Schiebehülse

376 - 377

Einbaubeispiele P4C-Polygonprofil

Seite

378

Produktbeschreibung Keilwellenprofil und Verbindungen für zylindrische Wellen

Seite

379

Vorauswahl und Berechnungen Keilwellenprofil

Seite

Festigkeitsberechnung Welle- und Nabenberechnung

380 - 381

Abmessungen Keilwellen

Seite

Keilwelle (kaltgezogen) Hülse

382 - 383

Abmessungen Keilwellen

Seite

Klemmring Schiebehülse Lohnräumen

384 - 385

Abmessungen zylindrische Wellen

Seite

Schalenkupplung Klemmring

386 - 387

Einbaubeispiele Keilwellenprofil

Seite

388

Technische Informationen

Vorauswahl und Produktvergleich

Bei der ersten Auslegung des Polygon-Wellen-Durchmessers wird als Überschlagsanhaltswert mit der Drehbeanspruchung gerechnet.

Als Näherungswert dient die Kreisfläche des Profilinnenkreises. Durch das Fehlen von Kanten und Ecken an Polygonwellen tritt an diesen keine Kerbwirkung auf, wodurch auch die Bildung von Härterissen vermieden wird.

Durch die günstigen Dimensionen, da kein Kerbwirkungsfaktor bei der Festigkeitsberechnung berücksichtigt werden muss, erhält man höhere Widerstandsmomente.

An der Technischen Hochschule in Graz wurden durch Herrn Prof. Dr. Ing. R. Musyl Vergleichsberechnungen zur Ermittlung von Trägheitsmomenten von Wellen mit einfacher Keilverbindung (Passfeder) eines Vielkeilwellenprofils (sechs Keile) und eines Polygonprofils P4C mit einem Bezugsdurchmesser D= 25 mm durchgeführt.

In der untenstehenden Tabelle wurden die Ergebnisse zusammengefasst.

Zur Vervollständigung dieser Gegenüberstellung ist das P3G-Profil dargestellt. Hierbei ist zu beachten, dass dieses Profil nur für ruhende Verbindungen (nicht unter Drehmoment verschiebbar) eingesetzt wird.

	ohne Berücksichtigu	ıng der Kerbwirkung	mit Berücksichtigu	ng der Kerbwirkung
Trägheitsmomente	axial J _x ; J _y [cm⁴]	polar J _p [cm⁴]	axial β _k ; J _x ; J _y [cm⁴]	polar β _k ; J _p [cm ⁴]
Passfederwelle DIN 6885/2 D= Ø 25 mm	J _x = 0,76852 J _y = 0,94673	J _p = 1,71525	$\beta_{kt} = 1,4 \\ J_{x \beta k} = 0,54894 \\ J_{y \beta k} = 0,67624$	$\beta_{kt} = 1.4$ $J_{p \beta k} = 1.22518$
Sechskeilwelle DIN 5461 D= Ø 25 mm	J _x = J _y = 1,35865	J _p = 2,71730	$\beta_{kt} = 1,7$ $J_{x \beta k} = J_{y \beta k} = 0,79921$	$\beta_{kt} = 1,7$ $J_{p \beta k} = 1,59842$
Polygonprofil P4C D= d ₁ = Ø 25 mm e= 5 mm b= 21 mm	J _x = J _y = 1,37456	J _p = 2,74912	$\beta_{kt} = 1.0$ $J_x = J_y = 1.37456$	$\beta_{kt} = 1.0$ $J_p = 2,74912$
Polygonprofil P3G D= D _M = 25 mm d ₁ = 26,6 mm d ₂ = 23,4 mm e= 0,8 mm	J _x = J _y = 1,865	J _p = 3,73	$\beta_{kt} = 1.0$ $J_x = J_y = 1.865$	$\beta_{kt} = 1.0$ $J_p = 3.73$

Produktbeschreibung

P3G-Polygonprofil

Die INKOMA-P3G-Polygonprofile haben folgende Eigenschaften:

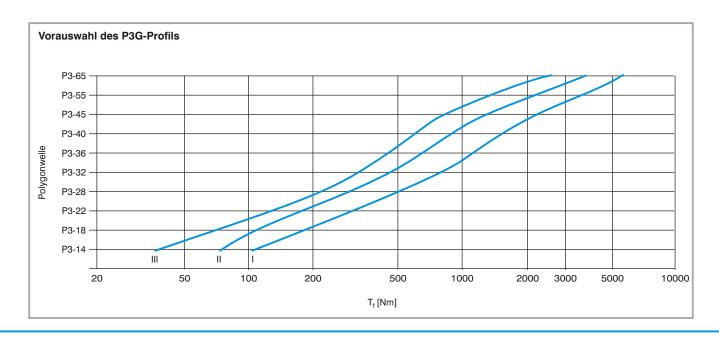
- Das P3G-Polygonprofil eignet sich für ruhende Welle-Nabe-Verbindungen. D.h. es ist nicht geeignet für unter Drehmoment längsverschiebbare Verbindungen.
- 2. Selbstzentrierend
- Gegenüber Keilwellenprofilen gleicher Größe hat das INKOMA P3G-Polygonprofil eine um 30 % höhere Dauerfestigkeit.
- 4. Das Profil der Welle wird grundsätzlich durch Schleifen hergestellt.
- Beim Nabenprofil kann die Herstellung teils durch Räumen oder Schleifen erfolgen.
- Sehr gute Rundlaufeigenschaften, wenn Welle und Nabe durch Schleifen hergestellt werden.

Vorauswahl und Berechnungen

P3G-Polygonprofil DIN 32711

Festigkeitsberechnung:

Berechnungsgrundlagen P3G:


Für die Praxis ergeben die nachstehenden Formeln eine ausreichende Genauigkeit der Rechnung.

	Erläute	rungen:	
	d ₁	[cm]	Innenkreisdurchmesser
	d ₂	[cm]	Außenkreisdurchmesser
	е	[cm]	Exzentergröße
	k	[-]	D_M 35 k= 1,44 $D_M > 35$ k= 1,20
	1	[cm]	Nabenlänge
	р	[N/cm ²]	Spezifische Flächenpressung
	s	[cm]	Kleinste Nabenwanddicke
	y _{eff}	[μm]	Effektive Nabenaufweitung
	y ₁	[µm/N]	Spezifische Nabenaufweitung
	A	[cm ²]	Querschnitt der P3G-Profile
ı			

	[cm]	Mittlerer Durchmesser
D _M		
	[N/cm ²]	Gleitmodul (80 • 10 ⁵ N/cm ² für Stahl)
J _P	[cm ⁴]	Trägheitsmoment gegen Torsion Torsionsmoment
T _t	[Ncm]	Polares Widerstandsmoment
W _P	[cm ³]	Äquatoriales Widerstandsmoment
W _x	[N/cm ²]	·
σ _{zzul} .		Zulässige Zugspannung
τ	[N/cm ²]	Torsionsspannung Verdrehwinkel
U	[°/cm]	verarenwinkei

Vorauswahl des P3G-Profils:

Wenn das zu übertragende Drehmoment T_t bekannt ist, kann mit Hilfe der Kurven das erforderliche Polygonprofil ermittelt werden. Die Kurven I, II und III entsprechen den Belastungsfällen I, II und III (statische, schwellende und wechselnde Belastung).

Vorauswahl und Berechnungen

P3G-Polygonprofil DIN 32711

Welle- und Nabenberechnung:

Welle:

Nabe:

Torsionsspannung
$$\tau = \frac{T_t}{W_p}$$
 $\tau_{zul.}$

$$W_p \approx \frac{2 \cdot J_p}{D_M}$$

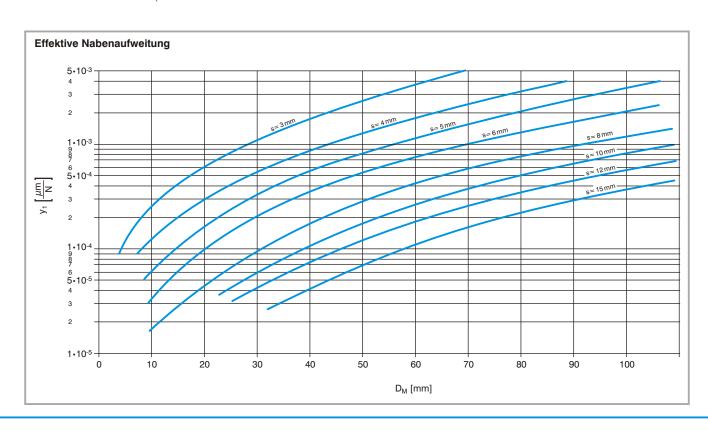
Biegespannung

$$\sigma_b = \frac{M_b}{W_x} \quad \sigma_{b \, zul.}$$

$$W_x \approx \frac{J_p}{D_M}$$

Verdrehwinkel

$$\vartheta = \frac{180^{\circ}}{\pi} \cdot \frac{\mathsf{T_t} \cdot \mathsf{I}}{\mathsf{G} \cdot \mathsf{J_p}}$$

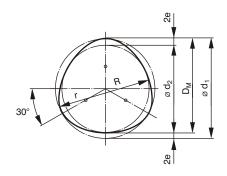

$$J_p = \frac{\pi \cdot D_M^2}{4} \cdot \left(\frac{D_M^2}{8} - 3 \cdot e^2\right) - 6 \cdot \pi \cdot e^4$$

Spezifische
$$p = \frac{T_t}{I \cdot \left(0.75 \cdot \pi \cdot D_M \cdot e + \frac{D_M^2}{20}\right)}$$

Nabenwanddicke
$$s = k \cdot \sqrt{\frac{T_t}{\sigma_{z_{zul.}} \cdot 1}}$$

$$\begin{array}{ll} \text{Effektive} & & & \\ \text{Nabenaufweitung} & & & \\ \end{array} \textbf{y}_{\text{eff}} = \frac{T_t}{I} ~ \bullet ~ \textbf{y}_1$$

Die Kurvenwerte y_1 gelten nur für Stahl mit E= 210000 N/mm². Für Werkstoffe mit einem anderen Elastizitätsmodus E_1 sind die Kurvenwerte y_1 mit dem Wert $\frac{210000\,\text{N/mm²}}{E_1}$ zu multiplizieren.

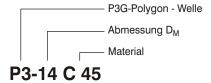


Abmessungen

P3G-Polygon - Welle (geschliffen)

Die INKOMA-P3G-Polygon-Wellen-Profile sind geschliffen und nach DIN 32711 gefertigt.

Lieferbar in unterschiedlichen Materialgüten, vorzugsweise gefertigt in C 45 und in Längen bis max. 2 m in Abhängigkeit von der Profil-



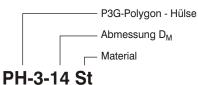
Maßr und R für zeichnerische Darstellung anstelle einer Zykloide.

Bestellbeispiel:

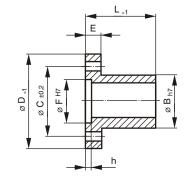
Die INKOMA-P3G-Polygon-Hülsen-Profile sind nach DIN 32711 gefertigt.

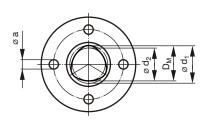
Lieferbar in:

• Stahl C 45


• Bronze Bz 12 Bz

oder andere Güten und Oberflächenbehandlungen auf Anfrage.


Fehlende Profilmaße siehe Polygon-Welle.



Bestellbeispiel:



			Abmes	sungen [mn	n]			Widerstan	dsmoment		
		Toleranzen									
Bezeichnung	D _M	D _{M g6}	d ₁	d ₂	е	R	r	W _p [cm³]	W _x [cm ³]	A [cm²]	Gewicht [kg/m]
P3-14	14	-0,006 / -0,017	14,88	13,12	0,44	9,86	4,14	0,45	0,25	1,51	1,19
P3-18	18	-0,006 / -0,017	19,12	16,88	0,56	12,64	5,36	0,96	0,53	2,50	1,98
P3-22	22	-0,007 / -0,020	23,40	20,60	0,70	15,55	6,45	1,75	0,96	3,74	2,95
P3-28	28	-0,007 / -0,020	29,80	26,20	0,90	19,85	8,15	3,60	1,97	6,05	4,78
P3-32	32	-0,009 / -0,025	34,24	29,76	1,12	23,28	8,72	5,30	2,91	7,88	6,23
P3-36	36	-0,009 / -0,025	38,50	33,50	1,25	26,13	9,87	6,90	3,80	9,97	7,88
P3-40	40	-0,009 / -0,025	42,80	37,20	1,40	29,10	10,90	10,45	5,69	12,31	9,72
P3-45	45	-0,009 / -0,025	48,20	41,80	1,60	32,90	12,10	14,79	8,08	15,57	12,30
P3-55	55	-0,010 / -0,029	59,00	51,00	2,00	40,50	14,50	27,00	14,71	23,24	18,36
P3-65	65	-0,010 / -0,029	69,90	60,10	2,45	48,43	16,57	44,20	24,20	32,39	25,59

Sonderprofile nach Absprache

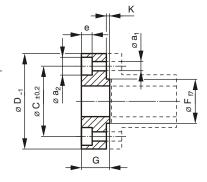
					Į.	bmessun	gen [mm]						
		Toleranzen											
Bezeichnung	D_M	D _M H7	d ₁	d ₂	В	С	D	E	F	L	а	h	Gewicht [kg/St]
PH-3-14	14	+0,018 / 0	14,88	13,12	22	30	42	8	20	28	5,3	3	0,12
PH-3-18	18	+0,018 / 0	19,12	16,88	30	40	54	9	25	40	5,3	3	0,24
PH-3-22	22	+0,021 / 0	23,40	20,60	38	50	65	10	30	50	6,4	3,5	0,44
PH-3-28	28	+0,021 / 0	29,80	26,20	45	60	79	12	40	60	8,4	4	0,77
PH-3-32	32	+0,025 / 0	34,24	29,76	50	65	84	12	45	65	8,4	4	0,89
PH-3-36	36	+0,025 / 0	38,50	33,50	55	70	90	15	50	70	8,4	4	1,10
PH-3-40	40	+0,025 / 0	42,80	37,20	60	75	95	15	55	80	8,4	4	1,27
PH-3-45	45	+0,025 / 0	48,20	41,80	70	85	108	16	60	85	10,5	4	2,00
PH-3-55	55	+0,030 / 0	59,00	51,00	80	96	118	16	70	98	10,5	4	2,32
PH-3-65	65	+0,030 / 0	69,90	60,10	90	106	130	18	80	110	10,5	4	3,36

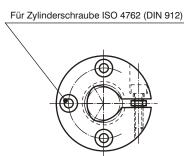
Sondergrößen nach Ihren Zeichnungen

Abmessungen

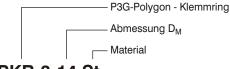
P3G-Polygon - Klemmring

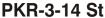
Die INKOMA-P3G-Polygon-Klemmring-Profile sind nach DIN 32711 gefertigt.


Lieferbar in:


- Stahl C 45 St
- Bronze Bz 12 Bz

oder andere Güten und


Oberflächenbehandlungen auf Anfrage.

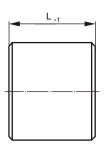

Fehlende Profilmaße siehe Polygon-Welle Seite 364.

Bestellbeispiel:

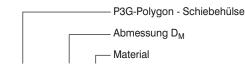
P3G-Polygon - Schiebehülse

Die INKOMA-P3G-Polygon-Schiebehülsen-Profile sind nach DIN 32711 gefertigt.

Lieferbar in:


- Stahl C 45 S
- Bronze Bz 12 Bz

oder andere Güten und


Oberflächenbehandlungen auf Anfrage.

Fehlende Profilmaße siehe Polygon-Welle Seite 364.

ø D ha

Bestellbeispiel:



PSH-3-14 St

P3G-Polygon - Lohnräumen

Neben unserem Normprogramm, wie das Räumen von Keilwellenund Polygon-Profilen, bieten wir eine Vielzahl von Räumprofilen an, wie z.B. Nabennuten, Kerb-Zahnnaben nach DIN 5481, Evolventen-Zahnnaben nach DIN 5480 und 5482 usw.

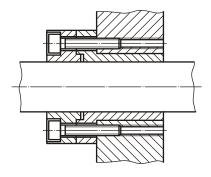
Bitte fragen Sie Ihr spezielles Räumprofil bei uns an. Wir machen Ihnen gern ein Angebot.

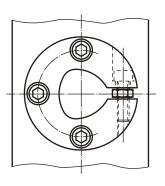
					Abm	essunger	ı [mm]						
		Toleranz											
Bezeichnung	D _M	D _M H7	d ₁	d ₂	С	D	F	G	К	a ₁	a ₂	е	Gewicht [kg/St]
PKR-3-14	14	+0,018 / 0	14,88	13,12	30	42	20	14	2	5,3	10	6	0,12
PKR-3-18	18	+0,018 / 0	19,12	16,88	40	54	25	16	2	5,3	10	6	0,23
PKR-3-22	22	+0,021 / 0	23,40	20,60	50	65	30	18	3	6,4	11	7	0,34
PKR-3-28	28	+0,021 / 0	29,80	26,20	60	79	40	23	3	8,4	15	9	0,63
PKR-3-32	32	+0,025 / 0	34,24	29,76	65	84	45	23	3	8,4	15	9	0,78
PKR-3-36	36	+0,025 / 0	38,50	33,50	70	90	50	25	3	8,4	15	9	0,89
PKR-3-40	40	+0,025 / 0	42,80	37,20	75	95	55	27	3	8,4	15	9	1,03
PKR-3-45	45	+0,025 / 0	48,20	41,80	85	108	60	27	3	10,5	18	11	1,44
PKR-3-55	55	+0,030 / 0	59,00	51,00	96	118	70	29	3	10,5	18	11	1,60
PKR-3-65	65	+0,030 / 0	69,90	60,10	106	130	80	29	3	10,5	18	11	1,97

Sondergrößen nach Ihren Zeichnungen

			Abmessu	ngen [mm]			
		Toleranz					
Bezeichnung	D_{M}	D _M H7	d ₁	d ₂	D	L	Gewicht [kg/St]
PSH-3-14	14	+0,018 / 0	14,88	13,12	35	28	0,19
PSH-3-18	18	+0,018 / 0	19,12	16,88	45	40	0,41
PSH-3-22	22	+0,021 / 0	23,40	20,60	55	50	0,76
PSH-3-28	28	+0,021 / 0	29,80	26,20	65	60	1,27
PSH-3-32	32	+0,025 / 0	34,24	29,76	75	65	1,80
PSH-3-36	36	+0,025 / 0	38,50	33,50	80	70	2,09
PSH-3-40	40	+0,025 / 0	42,80	37,20	85	80	2,56
PSH-3-45	45	+0,025 / 0	48,20	41,80	90	85	3,02
PSH-3-55	55	+0,030 / 0	59,00	51,00	100	95	3,80
PSH-3-65	65	+0,030 / 0	69,90	60,10	110	110	5,10

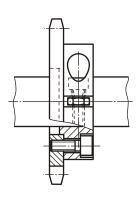
Sondergrößen nach Ihren Zeichnungen

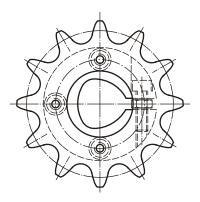

Bezeichnung	Vorbohrung [mm]	Spanungslänge [mm]
P3-14	1)	1)
P3-18	ø 16,5 + 0,05	16 - 40
P3-22	ø 20,1 + 0,05	20 - 50
P3-28	ø 25,6 + 0,05	18 - 45
P3-32	ø 29,2 + 0,05	18 - 45
P3-36	ø 32,9 + 0,05	25 - 70
P3-40	1)	1)
P3-45	1)	1)
P3-55	1)	1)
P3-65	1)	1)

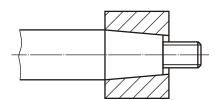

¹⁾ Dieses Profil kann nur durch Schleifen hergestellt werden. Im Bedarfsfall bitte anfragen.

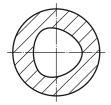
Einbaubeispiele

P3G-Polygonprofil


Durch Kombination von Polygon-Hülse mit Polygon-Klemmring ist die Sitzqualität einstellbar.

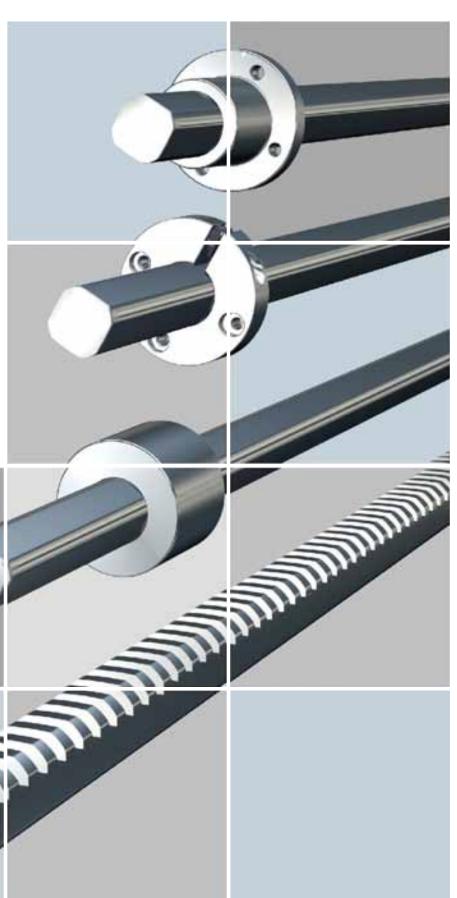





Polygon-Klemmring und Kettenrad. Befestigung durch Schrauben und Verstiften.



Welle-Nabe-Verbindung mit konisch geschliffenem Polygonprofil für verdrehspielarme Drehmomentübertragung.



Produktbeschreibung

P4C-Polygonprofil

Die INKOMA-P4C-Polygonprofile haben folgende Eigenschaften:

- Das P4C-Polygonprofil eignet sich für Welle-Nabe-Verbindungen, die axial verschoben werden. Besonders für Anwendungen, die unter Drehmoment längs verschoben werden.
- 2. Selbstzentrierend
- 3. Gegenüber Keilwellenprofilen gleicher Größe hat das INKOMA P4C-Polygonprofil eine um 30 % höhere Dauerfestigkeit.
- 4. Die P4C-Polygonwelle kann gezogen oder geschliffen ausgeführt werden.
- Die Innenprofile der Naben werden wirtschaftlich durch Räumen hergestellt, ein Schleifen ist nicht möglich.

Vorauswahl und Berechnungen

P4C-Polygonprofil DIN 32712

Festigkeitsberechnung:

Berechnungsgrundlagen P4C:


Für die Praxis ergeben die nachstehenden Formeln eine ausreichende Genauigkeit der Rechnung.

Erläut	terungen:	
b	[cm]	Innenkreisdurchmesser
d ₁	[cm]	Außenkreisdurchmesser
е	[cm]	Exzentergröße
d _r	[cm]	Rechnerischer theoretischer Durchmesser
e _r	[cm]	Rechnerische Exzentergröße
ı	[cm]	Nabenlänge
р	[N/cm ²]	Spezifische Flächenpressung
s	[cm]	Kleinste Nabenwanddicke
y _{eff}	[µm]	Effektive Nabenaufweitung
У1	[μm/N]	Spezifische Nabenaufweitung

Α	[cm ²]	Querschnitt der P4C-Profile
G	[N/cm ²]	Gleitmodul (80 • 10 ⁵ N/cm ² für Stahl)
J_P	[cm ⁴]	Trägheitsmoment gegen Torsion
T_t	[Ncm]	Torsionsmoment
W_{P}	[cm ³]	Polares Widerstandsmoment
W_{x}	[cm ³]	Äquatoriales Widerstandsmoment
$\sigma_{\text{zzul.}}$	[N/cm ²]	Zulässige Zugspannung
τ	[N/cm ²]	Torsionsspannung
θ	[°/cm]	Verdrehwinkel

Vorauswahl des P4C-Profils:

Wenn das zu übertragende Drehmoment T_t bekannt ist, kann mit Hilfe der Kurven das erforderliche Polygonprofil ermittelt werden. Die Kurven I, II und III entsprechen den Belastungsfällen I, II und III (statische, schwellende und wechselnde Belastung).

Vorauswahl und Berechnungen

P4C-Polygonprofil DIN 32712

Welle- und Nabenberechnung:

Welle:

Nabe:

Torsionsspannung
$$\tau = \frac{T_t}{W_p}$$
 $\tau_{zul.}$

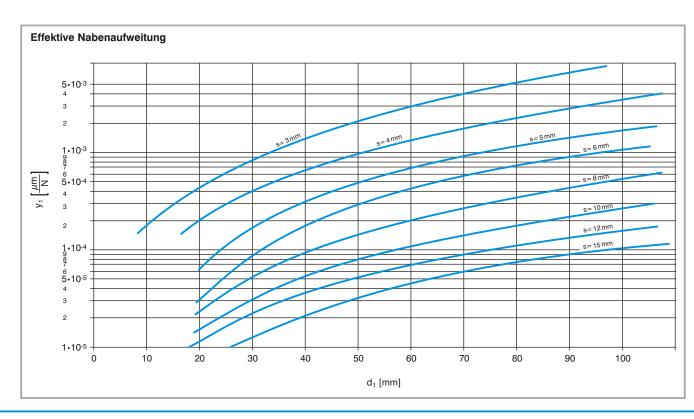
$$W_p \approx 0.2 \cdot b^3$$

$$\mbox{Biegespannung} \hspace{0.5cm} \sigma_{\mbox{\scriptsize b}} = \frac{\mbox{\scriptsize M}_{\mbox{\scriptsize b}}}{\mbox{\scriptsize W}_{\mbox{\scriptsize x}}} \hspace{0.5cm} \sigma_{\mbox{\scriptsize b zul.}}$$

$$W_X \approx 0.15 \cdot b^3$$

$$\text{Verdrehwinkel} \qquad \vartheta \ = \frac{180^{\circ}}{\pi} \, \bullet \, \frac{T_t \bullet I}{G \, \bullet \, J_p}$$

$$J_p \approx 0.1 \cdot b^4$$


$$\begin{array}{ll} \text{Spezifische} & p = & \frac{T_t}{\text{I} \cdot \left(\pi \cdot e_r \cdot d_r + \frac{d_r^2}{20} \right)} \\ & e_r = & \frac{(d_1 - b)}{4} \end{array}$$

$$d_r = b + 2 \cdot e$$

Nabenwanddicke s =
$$0.7 \cdot \sqrt{\frac{T_t}{G_{zzul.} \cdot I}}$$

Effektive
$$y_{eff} = \frac{T_t}{I} \, \bullet \, y_1$$
 Nabenaufweitung

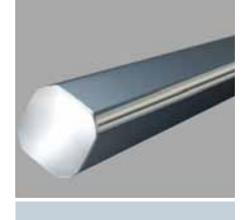
Die Kurvenwerte y_1 gelten nur für Stahl mit $E=210000 \ N/mm^2$. Für Werkstoffe mit einem anderen Elastizitätsmodul E_1 sind die Kurvenwerte y_1 mit dem Wert $\frac{210000 \ N/mm^2}{E_1}$ zu multiplizieren.

Abmessungen

P4C-Polygon - Welle (kaltgezogen)

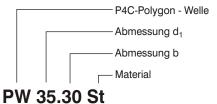
Die INKOMA-P4C-Polygon-Wellen-Profile sind kaltgezogen und nach DIN 32712 gefertigt.

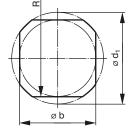
Lieferbar in:


• Stahl Ck 45 St

Standardmäßig in Längen von max. 4-6 m lieferbar oder nach Ihren Zeichnungen bearbeitet.

Bei der Bestellung von Fixlängen ist zu beachten, dass die Wellen nur gesägt und nicht gerichtet sind. Auf Wunsch ist ein Richten in unserem Haus möglich.


Andere Güten (Material, Toleranzen) sind auch als geschliffene Wellen erhältlich.

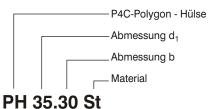

Maß R für zeichnerische Darstellung anstelle einer Zykloide.

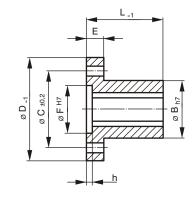
Bestellbeispiel:

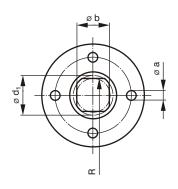
P4C-Polygon - Hülse

Die INKOMA-P4C-Polygon-Hülsen-Profile sind nach DIN 32712 gefertigt.

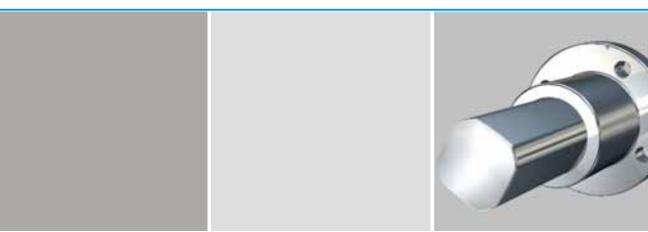
Lieferbar in:


• Stahl C 45 St • Bronze Bz 12 Bz


oder andere Güten und Oberflächenbehandlungen auf Anfrage.


Fehlende Profilmaße s. Polygon-Welle

Bestellbeispiel:



			Abmessu	ngen [mm]			Widerstan	dsmoment		
			Toler	anzen						
Bezeichnung	b	d ₁	b	d ₁	R	e	W _p [cm³]	W _x [cm³]	A [cm²]	Gewicht [kg/m]
PW 14.11	11	14	-0,01 / -0,05	-0,060 / -0,122	31,1	1,6	0,27	0,20	1,23	0,97
PW 20.17	17	20	-0,01 / -0,05	-0,060 / -0,122	56,5	3	0,98	0,74	2,69	2,11
PW 25.21	21	25	-0,01 / -0,05	-0,060 / -0,122	90,5	5	1,85	1,39	4,15	3,25
PW 30.25	25	30	-0,01 / -0,05	-0,060 / -0,122	92,5	5	3,13	2,34	5,94	4,66
PW 35.30	30	35	-0,01 / -0,06	-0,060 / -0,122	95,0	5	5,40	4,05	8,29	6,50
PW 40.35	35	40	-0,01 / -0,06	-0,060 / -0,122	113,5	6	8,58	6,43	11,04	8,66
PW 45.40	40	45	-0,01 / -0,06	-0,060 / -0,122	116,0	6	12,80	9,60	14,18	11,13
PW 50.43	43	50	-0,01 / -0,06	-0,060 / -0,122	117,5	6	15,90	11,93	16,97	13,32
PW 60.53	53	60	-0,01 / -0,06	-0,060 / -0,122	122,5	6	29,78	22,33	25,06	19,67
PW 70.60	60	70	-0,01 / -0,06	-0,060 / -0,122	126,0	6	43,20	32,40	33,17	26,00

Lagerlänge 4 - 6 m; weitere Längen und Sonderprofile nach Absprache

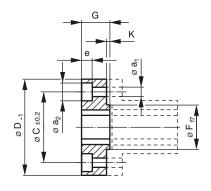
					Ab	messung	en [mm]							
			Tolera	anzen										
Bezeichnung	b	d ₁	b ^{H7}	d ₁ H11	R	В	С	D	E	F	L	а	h	Gewicht [kg/St]
PH 14.11	11	14	+0,018 / 0	+0,110 / 0	31,1	22	30	42	8	20	28	5,3	3	0,12
PH 20.17	17	20	+0,018 / 0	+0,130 / 0	56,5	30	40	54	9	25	40	5,3	3	0,24
PH 25.21	21	25	+0,021 / 0	+0,130 / 0	90,5	38	50	65	10	30	50	6,4	3,5	0,44
PH 30.25	25	30	+0,021 / 0	+0,130 / 0	92,5	45	60	79	12	40	60	8,4	4	0,77
PH 35.30	30	35	+0,021 / 0	+0,160 / 0	95,0	50	65	84	12	45	65	8,4	4	0,89
PH 40.35	35	40	+0,025 / 0	+0,160 / 0	113,5	55	70	90	15	50	70	8,4	4	1,10
PH 45.40	40	45	+0,025 / 0	+0,160 / 0	116,0	60	75	95	15	55	80	8,4	4	1,27
PH 50.43	43	50	+0,025 / 0	+0,160 / 0	117,5	70	85	108	16	60	85	10,5	4	2,00
PH 60.53	53	60	+0,030 / 0	+0,190 / 0	122,5	80	96	118	16	70	98	10,5	4	2,32
PH 70.60	60	70	+0,030 / 0	+0,190 / 0	126,0	90	106	130	18	80	110	10,5	4	3,36

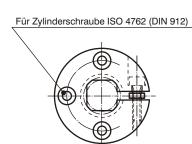
Sondergrößen nach Ihren Zeichnungen.

Abmessungen

P4C-Polygon - Klemmring

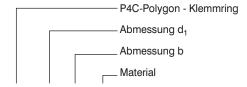
Die INKOMA-P4C-Polygon-Klemmring-Profile sind nach DIN 32712 gefertigt.


Lieferbar in:


- Stahl C 45 St
- Bronze Bz

oder andere Güten und

Oberflächenbehandlungen auf Anfrage.

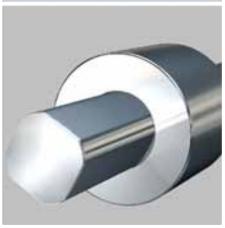

Fehlende Profilmaße s. Polygon-Welle Seite 372.

Bestellbeispiel:

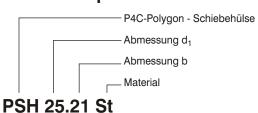
PKR 35.30 St

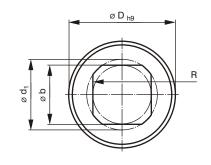
P4C-Polygon - Schiebehülse

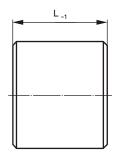
Die INKOMA-P4C-Polygon-Schiebehülsen-Profile sind nach DIN 32712 gefertigt.


Lieferbar in:

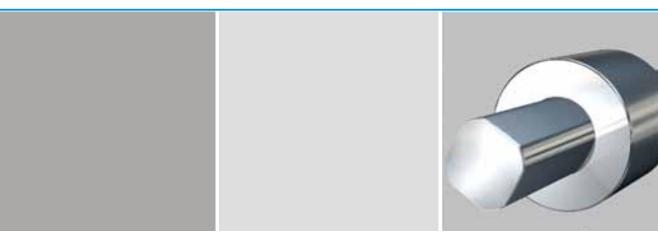
- Stahl C 45
- Bronze Bz 12 Bz


oder andere Güten und


Oberflächenbehandlungen auf Anfrage.


Fehlende Profilmaße s. Polygon-Welle Seite 372.

Bestellbeispiel:



		Abmessungen [mm]												
			Tolera	anzen										
Bezeichnung	b	d ₁	b ^{H7}	d ₁ H ¹¹	R	С	D	F	G	к	a ₁	a ₂	е	Gewicht [kg/St]
PKR 14.11	11	14	+0,018 / 0	+0,110 / 0	31,1	30	42	20	14	2	5,3	10	6	0,12
PKR 20.17	17	20	+0,018 / 0	+0,130 / 0	56,5	40	54	25	16	2	5,3	10	6	0,23
PKR 25.21	21	25	+0,021 / 0	+0,130 / 0	90,5	50	65	30	18	3	6,4	11	7	0,34
PKR 30.25	25	30	+0,021 / 0	+0,130 / 0	92,5	60	79	40	23	3	8,4	15	9	0,63
PKR 35.30	30	35	+0,021 / 0	+0,160 / 0	95,0	65	84	45	23	3	8,4	15	9	0,78
PKR 40.35	35	40	+0,025 / 0	+0,160 / 0	113,5	70	90	50	25	3	8,4	15	9	0,89
PKR 45.40	40	45	+0,025 / 0	+0,160 / 0	116,0	75	95	55	27	3	8,4	15	9	1,03
PKR 50.43	43	50	+0,025 / 0	+0,160 / 0	117,5	85	108	60	27	3	10,5	18	11	1,44
PKR 60.53	53	60	+0,030 / 0	+0,190 / 0	122,5	96	118	70	29	3	10,5	18	11	1,60
PKR 70.60	60	70	+0,030 / 0	+0,190 / 0	126,0	106	130	80	29	3	10,5	18	11	1,97

Sondergrößen nach Ihren Zeichnungen

	Abmessungen [mm]											
			Toler	anzen								
Bezeichnung	b	d ₁	b ^{H7}	d ₁ H11	R	D	L	Gewicht [kg/St]				
PSH 14.11	11	14	+0,018 / 0	+0,110 / 0	31,1	35	28	0,19				
PSH 20.17	17	20	+0,018 / 0	+0,130 / 0	56,5	45	40	0,41				
PSH 25.21	21	25	+0,021 / 0	+0,130 / 0	90,5	55	50	0,76				
PSH 30.25	25	30	+0,021 / 0	+0,130 / 0	92,5	65	60	1,27				
PSH 35.30	30	35	+0,021 / 0	+0,160 / 0	95,0	75	65	1,80				
PSH 40.35	35	40	+0,025 / 0	+0,160 / 0	113,5	80	70	2,09				
PSH 45.40	40	45	+0,025 / 0	+0,160 / 0	116,0	85	80	2,56				
PSH 50.43	43	50	+0,025 / 0	+0,160 / 0	117,5	90	85	3,02				
PSH 60.53	53	60	+0,030 / 0	+0,190 / 0	122,5	100	95	3,80				
PSH 70.60	60	70	+0,030 / 0	+0,190 / 0	126,0	110	110	5,10				

Sondergrößen nach Ihren Zeichnungen

Abmessungen

P4C-Polygon - Zahnstange

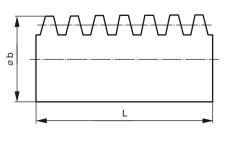
Durch Einarbeitung eines Zahnstangenprofiles in eine Polygonwelle bekommt der Konstrukteur ein ausgezeichnetes, vollständig geführtes axiales Vorschub- und Positionierelement an die Hand. Polygonstandardzahnstangen werden mit engen Toleranzen nach DIN 3972 mit modernen Verzahnungswerkzeugen hergestellt. Die Verzahnungsqualität ist gemäß Klasse 8 nach DIN 3962, 3963 und

3967 gefertigt.

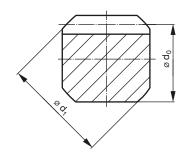
Optimale Laufqualität wird durch Zahnkopfabrundung der Zahnstange erreicht. In besonderen Fällen ist es möglich, Polygonzahnstangen als Messsystem zu benutzen. Wir können auch die erforderlichen Ritzel liefern oder nach Ihren Zeichnungen fertigen.

Die INKOMA-P4C-Polygon-Zahnstangen-Profile sind nach DIN 32712 gefertigt.

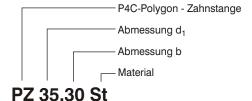
Lieferbar in:


Stahl Ck 45

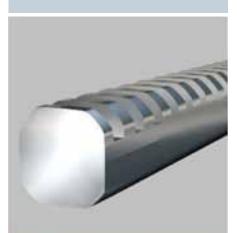
St

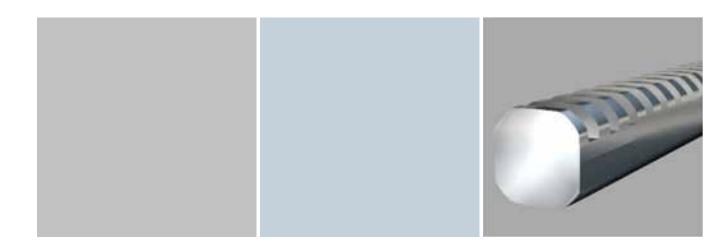

Lagerlänge 1000 mm geradverzahnt, Eingriffswinkel 20°

Fehlende Maße siehe P4C-Polygon-Welle Seite 372.



geradverzahnt, Eingriffswinkel 20°


Bestellbeispiel:

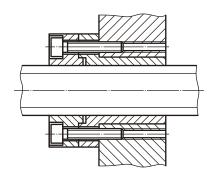


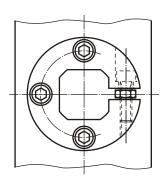
Polygon - Lohnräumen

Neben unserem Normprogramm, wie das Räumen von Keilwellen- und Polygon-Profilen, bieten wir eine Vielzahl von Räumprofilen an, wie z.B. Nabennuten, Kerb-Zahnnaben nach DIN 5481, Evolventen-Zahnnaben nach DIN 5480 und 5482 usw.

Bitte fragen Sie Ihr spezielles Räumprofil bei uns an. Wir machen Ihnen gern ein Angebot.

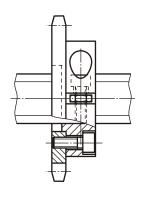
				Abmessungen [mr	n]			
			Toler	anzen				
Bezeichnung	b	d ₁	b	d ₁	R	Modul	d _o	Gewicht [kg/m]
PZ 14.11	11	14	-0,01 / -0,05	-0,060 / -0,122	31,1	1,0	10,0	0,90
PZ 20.17	17	20	-0,01 / -0,05	-0,060 / -0,122	56,5	1,5	15,5	1,89
PZ 25.21	21	25	-0,01 / -0,05	-0,060 / -0,122	90,5	2,0	19,0	2,98
PZ 30.25	25	30	-0,01 / -0,05	-0,060 / -0,122	92,5	2,5	22,5	4,12
PZ 35.30	30	35	-0,01 / -0,06	-0,060 / -0,122	95,0	3,0	27,0	5,90
PZ 40.35	35	40	-0,01 / -0,06	-0,060 / -0,122	113,5	3,0	32,0	7,86
PZ 45.40	40	45	-0,01 / -0,06	-0,060 / -0,122	116,0	4,0	36,0	10,10
PZ 50.43	43	50	-0,01 / -0,06	-0,060 / -0,122	117,5	4,0	39,0	12,00
PZ 60.53	53	60	-0,01 / -0,06	-0,060 / -0,122	122,5	5,0	48,0	17,50
PZ 70.60	60	70	-0,01 / -0,06	-0,060 / -0,122	126,0	6,0	54,0	23,45

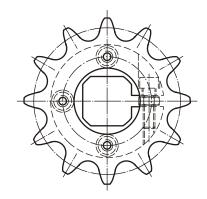

Zahnstangen mit anderem Modul und Längen auf Anfrage.

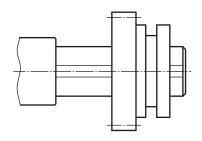

Bezeichnung	Vorbohrung [mm]	Spanungslänge [mm]
P 14.11	ø 10,7 H7	14 - 35
P 20.17	ø 16,7 H7	14 - 42
P 25.21	ø 20,8 H 7	20 - 60
P 30.25	ø 24,8 H 7	24 - 70
P 35.30	ø 29,7 H7	24 - 60
P 40.35	ø 34,8 H 7	25 - 80
P 45.40	ø 39,7 H 7	25 - 80
P 50.43	ø 42,7 H7	30 - 90
P 60.53	ø 52,7 H 7	34 - 100
P 70.60	∅ 59,7 H7	40 - 120

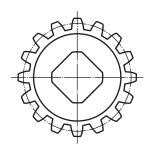
Einbaubeispiele

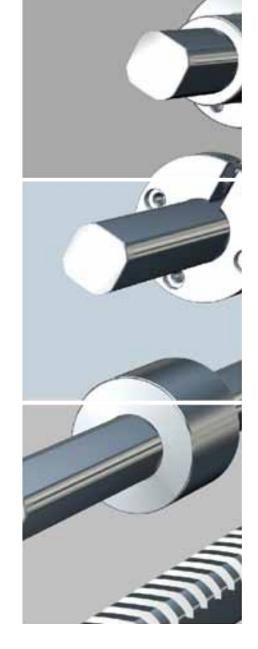
P4C-Polygonprofil

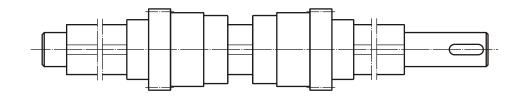

 $\label{thm:polygon-Klemmring} \textbf{D} \textbf{urch Kombination von Polygon-H\"{u}lse \ mit Polygon-Klemmring \ ist \ die \ Sitzqualit\"{a}t \ einstell \ bar.}$

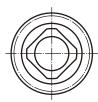





 $Polygon-Klemmring\ und\ Kettenrad.\ Befestigung\ durch\ Schrauben\ und\ Verstiften.$



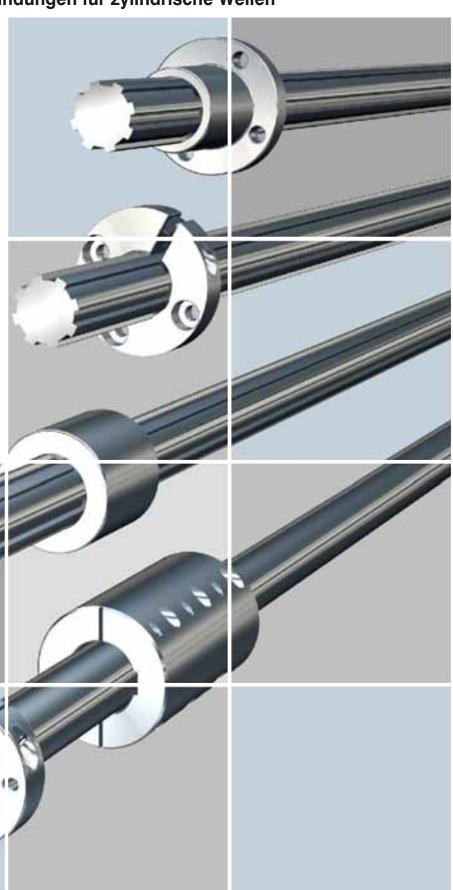

 $\label{thm:polygon-Wellemit Zahnrad.} Zahnrad nach Kundenzeichnung gefertigt mit geräumtem Polygonprofil.$



Polygon-Welle mit 2 Antriebs-Polygon-Hülsen.

Produktbeschreibung

Keilwellenprofil und Verbindungen für zylindrische Wellen


INKOMA-Vielkeilverbindungen, Klemmringe und Schalenkupplungen für den Maschinenbau, Apparatebau und Werkzeugbau sind:

- 1. kostensparend
- 2. erleichternd bei der Konstruktionsarbeit

Eine neue Art Kosten zu sparen, ohne die Qualität zu beeinträchtigen.

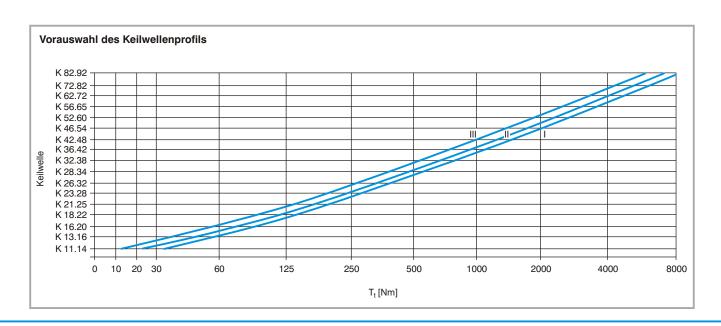
Mit dieser Aussage traten wir 1975 mit einem Programm einbaufertiger Vielkeilverbindungen in den Markt. Heute können wir sagen, dass wir der wichtigste Hersteller eines derart gelagerten Programmes in Europa sind. Dieser Erfolg ist uns Ansporn für die ständige Weiterentwicklung und Verbesserung des Produktprogrammes.

Für unsere Kunden fertigen wir auch Vielkeilverbindungen komplett nach Kundenzeichnungen und führen Räumarbeiten aus, z.B. Vielkeilwellenprofil, Polygon- und Vierkantprofile.

Vorauswahl und Berechnungen

Keilwellenprofil ähnlich ISO14 (DIN 5463)

Festigkeitsberechnung:


Berechnungsgrundlagen Keilwelle:

Erläu	terungen:	
d ₁	[mm]	Innenkreisdurchmesser
d ₂	[mm]	Außenkreisdurchmesser
f _w	[-]	Belastungsfaktor: statisch 1 schwellend 0,5 wechselnd 0,25
h	[mm]	Keilzahnhöhe
1	[mm]	Nabenlänge
n	[-]	Anzahl der Nuten
р	[N/mm ²]	Spezifische Flächenpressung

А	[mm²]	Querschnitt der Keilwelle
D _M	[mm]	Mittlerer Durchmesser
G	[N/cm ²]	Gleitmodul (80 • 10 ⁵ N/cm ² für Stahl)
J _P	[mm ⁴]	Polares Flächenträgheitsmoment
T _t	[Nm]	Torsionsmoment
W _P	[mm³]	Polares Widerstandsmoment
τ	[N/mm²]	Torsionsspannung
ϑ	[°/cm]	Verdrehwinkel

Vorauswahl des Keilwellen-Profils:

Wenn das zu übertragende Drehmoment T_t bekannt ist, kann mit Hilfe der Kurven das erforderliche Keilwellenprofil ermittelt werden. Die Kurven I, II und III entsprechen den Belastungsfällen I, II und III (statische, schwellende und wechselnde Belastung).

Vorauswahl und Berechnungen

Keilwellenprofil ähnlich ISO14 (DIN 5463)

Welle- und Nabenberechnung:

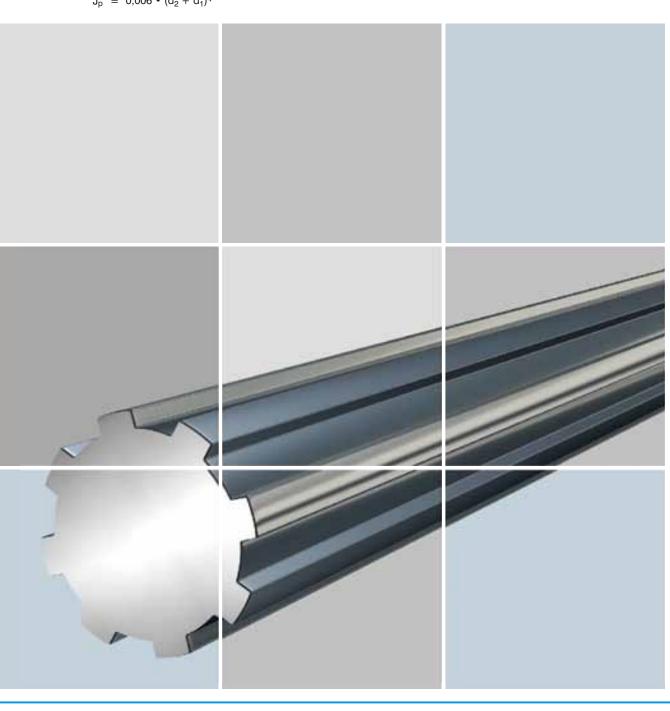
Welle:

Nabe:

Torsionsspannung
$$\tau = \frac{T_t \, ^{\bullet} \, 10^3}{W_p \, ^{\bullet} \, f_w} \quad \tau_{zul.}$$

$$W_p \approx 0.024 \cdot (d_2 + d_1)^3$$

Verdrehwinkel


$$\vartheta = \frac{180^{\circ}}{\pi} \cdot \frac{\mathsf{T_t} \cdot 10^6}{\mathsf{G} \cdot \mathsf{J_p}}$$

$$J_p = 0.006 \cdot (d_2 + d_1)^4$$

$$\begin{array}{lll} \text{Spezifische} & p & = & \frac{T_t \bullet 2000}{h \bullet I \bullet n \bullet D_M \bullet 0{,}75} & p_{zul.} \end{array}$$

$$h = 0.5 \cdot (d_2 - d_1)$$

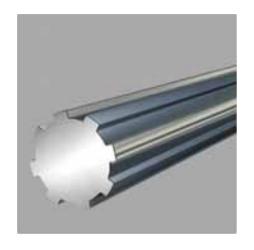
$$D_{M} = 0.5 \cdot (d_{2} + d_{1})$$

Abmessungen

Keilwelle (kaltgezogen)

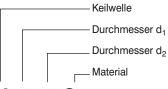
Die INKOMA-Keilwellen sind kaltgezogen und ähnlich ISO 14 (DIN 5463) gefertigt.

Lieferbar in:

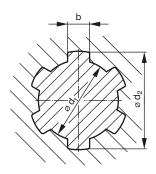

• Stahl Ck 45 St

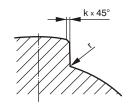
Standardmäßig in Längen von max. 3-6 m lieferbar oder nach Ihrer Zeichnung bearbeitet.

Bei der Bestellung von Fixlängen ist zu beachten, dass die Wellen nur gesägt und nicht gerichtet sind. Auf Wunsch ist ein Richten in unserem Haus möglich.


Andere Güten (Material, Toleranzen) und Größen von K 52.60 bis K 82.92 sind auf Wunsch auch als gefräste Wellen erhältlich.

n = Anzahl der Nuten





Bestellbeispiel:

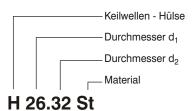
K 26.32 St

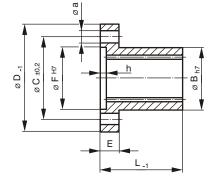
Keilwellen - Hülse

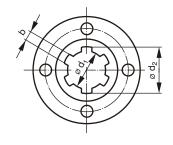
Die INKOMA-Keilwellen-Hülsen-Profile sind nach ISO 14 (DIN 5463) gefertigt.

Lieferbar in:

• Stahl C 45 S


• Bronze Bz 12 Bz


oder andere Güten und Oberflächenbehandlungen auf Anfrage.


n = Anzahl der Nuten

Bestellbeispiel:

					Abmessunge	n [mm]					
						Toleranzen					
Bezeichnung	n	b	d ₁	d ₂	b	d ₁	d ₂	k	r	A [mm²]	Gewicht [kg/m]
K 11.14	6	3	11	14	0 / -0,08	-0,01 / -0,08	-0,07 / -0,20	0,2	0,2	121,9	0,95
K 13.16	6	3,5	13	16	0 / -0,08	-0,01 / -0,08	-0,07 / -0,20	0,2	0,2	164,1	1,29
K 16.20	6	4	16	20	0 / -0,08	-0,01 / -0,08	-0,07 / -0,25	0,2	0,2	243,4	1,91
K 18.22	6	5	18	22	0 / -0,08	-0,01 / -0,08	-0,07 / -0,25	0,2	0,2	312,4	2,45
K 21.25	6	5	21	25	0 / -0,08	-0,01 / -0,08	-0,07 / -0,27	0,2	0,2	399,8	3,14
K 23.28	6	6	23	28	0 / -0,08	-0,01 / -0,08	-0,07 / -0,27	0,3	0,2	505,2	3,96
K 26.32	6	6	26	32	0 / -0,08	-0,01 / -0,08	-0,07 / -0,27	0,3	0,3	638,6	5,01
K 28.34	6	7	28	34	0 / -0,08	-0,01 / -0,08	-0,07 / -0,27	0,3	0,3	741,4	5,82
K 32.38	8	6	32	38	0 / -0,08	-0,01 / -0,08	-0,07 / -0,27	0,3	0,3	947,8	7,43
K 36.42	8	7	36	42	0 / -0,08	-0,01 / -0,08	-0,07 / -0,27	0,3	0,3	1185,3	9,30
K 42.48	8	8	42	48	0 / -0,08	-0,01 / -0,08	-0,07 / -0,27	0,3	0,3	1576,7	12,37
K 46.54	8	9	46	54	0 / -0,08	-0,01 / -0,08	-0,07 / -0,27	0,3	0,4	1949,0	15,30

Lagerlänge 3 - 6 m, weitere Längen auf Anfrage. Sonderprofile nach Absprache.

						Abme	ssungen [mm	1]								
					Т	oleranzen										
Bezeichnung	n	b	d ₁	d ₂	b	d ₁	d_2	В	С	D	E	F	L	а	h	Gewicht [kg/St]
H 11.14	6	3	11	14	+0,045 / +0,020	+0,018 / 0	+0,11 / 0	20	28	38	8	18	30	4,3	3	0,11
H 13.16	6	3,5	13	16	+0,060 / +0,030	+0,018 / 0	+0,11 / 0	24	32	43	8	20	30	4,3	3	0,14
H 16.20	6	4	16	20	+0,060 / +0,030	+0,018 / 0	+0,13 / 0	28	38	52	9	26	35	5,3	3	0,18
H 18.22	6	5	18	22	+0,060 / +0,030	+0,018 / 0	+0,13 / 0	30	40	54	9	28	40	5,3	3	0,23
H 21.25	6	5	21	25	+0,060 / +0,030	+0,021 / 0	+0,13 / 0	34	48	62	10	35	50	6,4	3,5	0,33
H 23.28	6	6	23	28	+0,060 / +0,030	+0,021 / 0	+0,13 / 0	36	50	64	10	35	55	6,4	3,5	0,43
H 26.32	6	6	26	32	+0,060 / +0,030	+0,021 / 0	+0,16 / 0	42	56	69	10	40	60	6,4	3,5	0,55
H 28.34	6	7	28	34	+0,076 / +0,030	+0,021 / 0	+0,16 / 0	46	60	78	14	45	60	8,4	4	0,85
H 32.38	8	6	32	38	+0,060 / +0,030	+0,025 / 0	+0,16 / 0	50	65	82	14	45	70	8,4	4	1,05
H 36.42	8	7	36	42	+0,076 / +0,040	+0,025 / 0	+0,16 / 0	54	70	90	16	55	80	10,5	4	1,20
H 42.48	8	8	42	48	+0,076 / +0,040	+0,025 / 0	+0,16 / 0	60	75	95	16	60	90	10,5	4	1,32
H 46.54	8	9	46	54	+0,076 / +0,040	+0,025 / 0	+0,19 / 0	65	80	100	16	65	100	10,5	4	1,58
H 52.60	8	10	52	60	+0,076 / +0,040	+0,025 / 0	+0,19 / 0	75	93	115	18	75	110	13	4	2,60
H 56.65	8	10	56	65	+0,076 / +0,040	+0,030 / 0	+0,19 / 0	80	100	124	18	80	120	13	4	3,10
H 62.72	8	12	62	72	+0,080 / +0,040	+0,030 / 0	+0,19 / 0	90	110	134	18	90	130	13	4	4,20
H 72.82	10	12	72	82	+0,080 / +0,040	+0,030 / 0	+0,19 / 0	100	122	154	20	100	140	17	4	5,50
H 82.92	10	12	82	92	+0,080 / +0,040	+0,035 / 0	+0,22 / 0	110	135	164	25	110	150	17	4	6,80

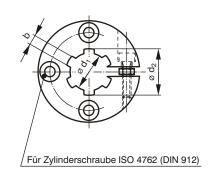
Sondergrößen nach Ihren Zeichnungen.

Abmessungen

Keilwellen - Klemmring

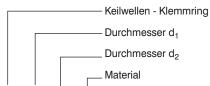
Die INKOMA-Keilwellen-Klemmring-Profile sind nach ISO 14 (DIN 5463) gefertigt.

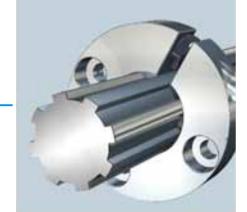

Lieferbar in:


• Stahl C 45 S

• Bronze Bz 12 Bz oder andere Güten und

Oberflächenbehandlungen auf Anfrage.


n = Anzahl der Nuten

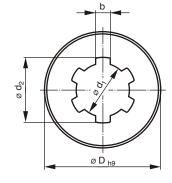


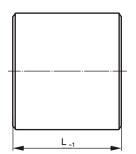
0

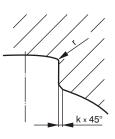
KR 26.32 St

Keilwellen - Schiebehülse

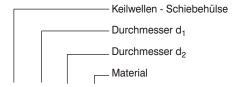
Die INKOMA-Keilwellen-Schiebehülsen-Profile sind nach ISO 14 (DIN 5463) gefertigt.


Lieferbar in:

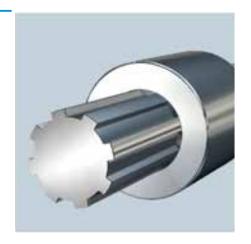

Stahl C 45
 Stahl C 45


• Bronze Bz 12 Bz

oder andere Güten und Oberflächenbehandlungen auf Anfrage.

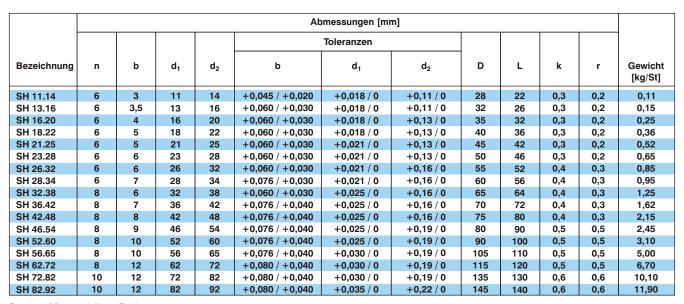

n= Anzahl der Nuten

Bestellbeispiel:



SH 11.14 St

Keilwellen - Lohnräumen


Neben unserem Normalprogramm, wie das Räumen von Keilwellenund Polygon-Profilen, bieten wir eine Vielzahl von Räumprofilen an, wie z.B. Nabennuten, Kerb-Zahnnaben nach DIN 5481, Evolventen-Zahnnaben nach DIN 5480 und DIN 5482 usw.

Bitte fragen Sie Ihr spezielles Räumprofil bei uns an. Wir machen Ihnen gern ein Angebot.

						Abn	nessungen	[mm]								
					Tol	leranzen										
Bezeichnung	n	b	d ₁	d ₂	b	d ₁	d ₂	С	D	F	G	К	a ₁	a ₂	е	Gewicht [kg/m]
KR 11.14	6	3	11	14	+0,045 / +0,020	+0,018 / 0	+0,11 / 0	28	38	18	11	2	4,3	8	5	0,11
KR 13.16	6	3,5	13	16	+0,060 / +0,030	+0,018 / 0	+0,11 / 0	32	45	20	12	2	4,3	8	5	0,14
KR 16.20	6	4	16	20	+0,060 / +0,030	+0,018 / 0	+0,13 / 0	38	52	26	14	2	5,3	10	6	0,18
KR 18.22	6	5	18	22	+0,060 / +0,030	+0,018 / 0	+0,13 / 0	40	54	28	14	2	5,3	10	6	0,23
KR 21.25	6	5	21	25	+0,060 / +0,030	+0,021 / 0	+0,13 / 0	48	62	35	14	3	6,4	11	7	0,33
KR 23.28	6	6	23	28	+0,060 / +0,030	+0,021 / 0	+0,13 / 0	50	65	35	14	3	6,4	11	7	0,43
KR 26.32	6	6	26	32	+0,060 / +0,030	+0,021 / 0	+0,16 / 0	56	70	40	15	3	6,4	11	7	0,55
KR 28.34	6	7	28	34	+0,076 / +0,030	+0,021 / 0	+0,16 / 0	60	78	45	20	3	8,4	15	9	0,85
KR 32.38	8	6	32	38	+0,060 / +0,030	+0,025 / 0	+0,16 / 0	65	82	45	20	3	8,4	15	9	1,05
KR 36.42	8	7	36	42	+0,076 / +0,040	+0,025 / 0	+0,16 / 0	70	90	55	22	3	10,5	18	11	1,20
KR 42.48	8	8	42	48	+0,076 / +0,040	+0,025 / 0	+0,16 / 0	75	95	60	22	3	10,5	18	11	1,30
KR 46.54	8	9	46	54	+0,076 / +0,040	+0,025 / 0	+0,19 / 0	80	100	65	24	3	10,5	18	11	1,45
KR 52.60	8	10	52	60	+0,076 / +0,040	+0,025 / 0	+0,19 / 0	93	115	75	28	3	13,0	18,5	15	1,70
KR 56.65	8	10	56	65	+0,076 / +0,040	+0,030 / 0	+0,19 / 0	100	124	80	30	3	13,0	18,5	15	2,20
KR 62.72	8	12	62	72	+0,080 / +0,040	+0,030 / 0	+0,19 / 0	110	134	90	32	3	13,0	18,5	15	2,70
KR 72.82	10	12	72	82	+0,080 / +0,040	+0,030 / 0	+0,19 / 0	122	154	100	36	3	17,5	26	20	4,00
KR 82.92	10	12	82	92	+0,080 / +0,040	+0,035 / 0	+0,22 / 0	135	164	110	40	3	17,5	26	20	4,90

Sondergrößen nach Ihren Zeichnungen

Sondergrößen nach Ihren Zeichnungen

Bezeichnung	Vorbohrung [mm]	Spanungslänge [mm]
K 11.14	ø 11 H7	12 - 30
K 13.16	Ø 13 ^{H7}	20 - 45
K 16.20	ø 16 ^{H7}	16 - 40
K 18.22	ø 18 ^{H7}	16 - 40
K 21.25	ø 21 H7	20 - 50
K 23.28	Ø 23 H7	20 - 55
K 26.32	ø 26 ^{H7}	28 - 70
K 28.34	Ø 28 H7	24 - 65
K 32.38	ø 32 H7	30 - 85

Bezeichnung	Vorbohrung [mm]	Spanungslänge [mm]
K 36.42	ø 36 H7	32 - 95
K 42.48	Ø 42 H7	30 - 90
K 46.54	ø 46 ^{H7}	30 - 100
K 52.60	Ø 52 H7	40 - 100
K 56.65	ø 56 ^{H7}	48 - 125
K 62.72	Ø 62 H7	40 - 100
K 72.82	ø 72 ^{H7}	48 - 150
K 82.92	Ø 82 H7	36 - 100

Abmessungen Schalenkupplung

Die INKOMA-Schalenkupplungen ähnlich DIN 115.

Lieferbar in:

• Stahl C 45

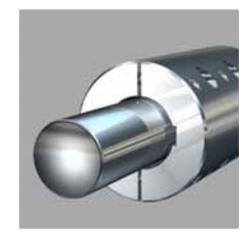
• Edelstahl (1.4305) VA

oder andere Güten auf Anfrage.

Für gleiche Wellendurchmesser d= 55 mm

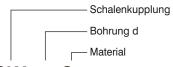
Schalenkupplung: SKA 55

SKB:

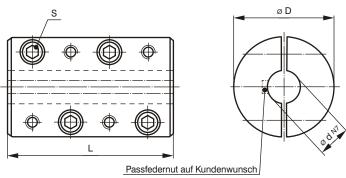

Für unterschiedliche Wellendurchmesser d=55 mm und 60 mm

Schalenkupplung: SKB 60/55

Sind die Durchmesser der zu kuppelnden Wellen verschieden groß, so ist das der stärkeren Welle entsprechende Modell zu wählen. Passfedernuten nach DIN 6885 Blatt 1.


Bei Anfragen und Bestellungen ist anzugeben, ob die Kupplung mit

oder ohne Passfedernut zu liefern ist.



Bestellbeispiel:

SKA 55 St

Klemmring für zylindrische Wellen

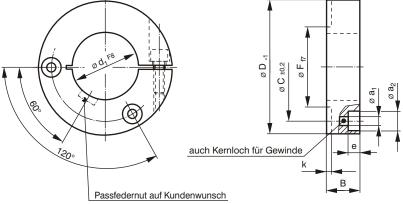
Die INKOMA-Klemmringe für zylindrische Wellen:

Lieferbar in:

• Stahl C 45

• Edelstahl (1.4305) VA

oder andere Güten auf Anfrage.



Bestellbeispiel: Klemmring (für zylindrische Wellen)

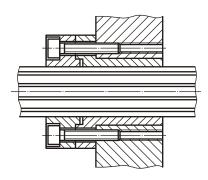
Vorzugsbohrung d₁

- Material

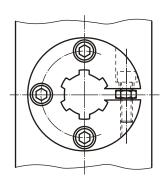
Gr 10 St

	А	bmessungen [mr	n]		Betriebsdaten			
	Bohrung			Drehmoment mit Passfeder	Drehmoment ohne Passfeder	Massenträgheits- moment	Klemmschrauben	Gewicht
Bezeichnung	d	D	L	T [Nm]	T [Nm]	J [kg m²]	S	[kg/St]
SKA 20	20	60	100	352	235	0,003	8xM8	2,20
SKA 25	25	80	130	668	445	0,004	8xM10	4,40
SKA 30	30	80	130	801	534	0,004	8xM10	4,20
SKA 35	35	80	160	1126	750	0,005	8xM10	4,80
SKA 40	40	80	160	1247	831	0,005	8xM10	4,50
SKA 45	45	100	190	1546	1230	0,013	8xM10	8,90
SKA 50	50	100	190	2052	1366	0,013	8xM10	8,35
SKA 55	55	120	220	3015	2010	0,032	8xM10	14,66
SKA 60	60	120	220	3286	2190	0,032	8xM10	13,90
SKA 70	70	140	250	4836	3224	0,066	10xM12	21,50
SKA 80	80	160	280	6804	4535	0,126	10xM12	31,50
SKA 90	90	180	310	8383	5588	0,223	12xM16	44,10
SKA 100	100	200	350	12480	8320	0,384	12xM16	61,50
SKA 110	110	220	390	15840	10560	0,627	12xM16	82,90
SKA 120	120	250	430	20646	13764	1,150	14xM16	118,00
SKA 140	140	280	490	32634	21756	2,100	14xM20	168,70
SKA 160	160	320	560	45120	30080	4,000	14xM24	251,00
SKA 180	180	360	630	67392	44928	7,300	14xM24	359,00
SKA 200	200	400	700	82680	55120	12,300	14xM27	492,00
SKA 220	220	450	770	109048	72730	21,800	16xM30	692,00
SKA 240	240	480	840	138384	92250	31,000	16xM30	850,00
SKA 260	260	520	910	164424	109160	45,600	16xM36	1080,00
SKA 280	280	570	980	205422	136900	71,300	16xM42	1400,00

	Abmessungen [mm]											
	Vorzugsbohrung	max. mögl. Bohrungsdurch- messer	max. mögl. Zentrierdurch- messer	max. mögl. Bohrungsdurch- messer bei ⊘ F								Gewicht
Bezeichnung	d ₁	d ₁	F 1)		В	С	D	a ₁	a ₂	е	k 1)	[kg/St]
GR 10	10	25	25	20	20	42	59	6,8	14,5	9	2	0,30
GR 15	15	30	30	25	20	47	65	6,8	14,5	9	2	0,35
GR 20	20	35	35	30	20	52	70	6,8	14,5	9	2	0,47
GR 25	25	40	40	35	20	57	75	6,8	14,5	9	2	0,50
GR 30	30	45	45	40	20	62	80	6,8	14,5	9	2	0,60
GR 35	35	50	50	45	25	67	85	6,8	14,5	9	3,5	0,75
GR 40	40	55	55	50	25	72	90	6,8	14,5	9	3,5	0,85
GR 45	45	60	60	55	25	77	95	6,8	14,5	9	3,5	0,95
GR 50	50	65	65	60	25	81	100	6,8	14,5	9	3,5	1,10
GR 55	55	70	70	65	25	86	105	6,8	14,5	9	3,5	1,25
GR 60	60	75	75	70	25	90	108	6,8	14,5	9	3,5	1,40
GR 70	70	80	80	75	28	100	122	8,4	17,5	11	3,5	1,50
GR 80	80	90	90	85	28	110	132	8,4	17,5	11	3,5	1,60
GR 90	90	100	100	95	28	120	142	8,4	17,5	11	3,5	1,75
GR 100	100	110	110	105	28	130	152	8,4	17,5	11	3,5	1,95
GR 110	110	115	120	115	30	140	169	10,2	19,5	14	3,5	2,83
GR 120	120	125	130	125	30	150	179	10,2	19,5	14	3,5	3,80

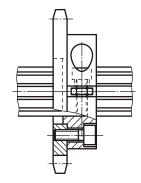

¹⁾ Zentrieransatz auf Kundenwunsch

Wenn Passfedernut oder Zentrieransatz gewünscht, bitte bei Bestellung angeben. $\varnothing\,d_1$ Ausführung auch mit Gewinde

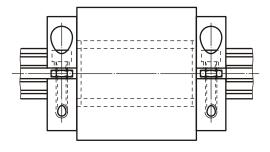

Einbaubeispiele

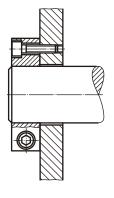
Keilwellenprofil ähnlich ISO14 (DIN 5463)

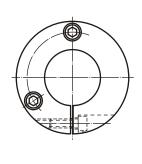
Durch Kombination von Keilwellen-Hülse mit Keilwellen-Klemmring ist die Sitzqualität einstellbar.



Keilwellen-Klemmring und Kettenrad. Befestigung durch Schrauben und Verstiften.

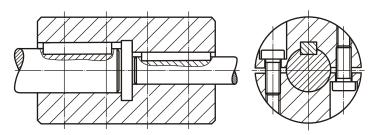

Doppelklemmung für längere Teile.





INKOMA-Klemmringe GR: für zylindrische Wellen als Wellenlagerung. Diese Klemmringe können auf unterschiedliche Weise benutzt werden:

- 1. im Lieferzustand
- 2. die Bohrung \mathbf{a}_1 kann für die nächstgrößere Zylinderschraube aufgebohrtwerden
- 3. die Bohrung ${\bf a}_1$ kann mit Gewinde versehen werden, ${\bf a}_1$ entspricht dabei dem Kernlochdurchmesser
- 4. zusätzlich kann ein Zentrieransatz angedreht werden
- die Bohrung d₁ kann aufgebohrt werden oder mit Gewinde versehen und als Klemmmutter benutzt werden
- die Klemmringe k\u00f6nnen mit oder ohne Passfedernut geliefert werden



INKOMA-Schalenkupplung SKA/ SKB: zur kraftschlüssigen Verbindung zweier Wellen mit gleichen oder unterschiedlichen Durchmessern.

Lieferbar in zwei Ausführungen:

- 1. **SKA** für gleiche Wellendurchmesser, Passfedernut auf Wunsch.
- 2. **SKB** für verschiedene Wellendurchmesser, Passfedernut auf Wunsch.

